The create_toolset
function takes names of predefined tools and
generates a list of wrapper functions for Precision-Recall curve
calculations.
create_usrtool(
tool_name,
func,
calc_auc = TRUE,
store_res = TRUE,
x = NA,
y = NA
)
A single string to specify the name of a user-defined tool.
A function to calculate a Precision-Recall curve and the AUC. It
should take an element of the test dataset generated by
create_testset
as an argument. It also should return a list
with three elements - 'x', 'y', and 'auc' that represent calculated recall
and precision values plus the AUC score.
See create_example_func
for an example.
A Boolean value to specify whether the AUC score should be calculated.
A Boolean value to specify whether the calculated curve is retrieved and stored.
Set pre-calculated recall values.
Set pre-calculated precision values.
A list of R6
tool objects.
create_toolset
to create a predefined tool set.
create_testset
for testset
.
create_example_func
to create an example function.
## Create a new tool interface called "xyz"
efunc <- create_example_func()
toolset1 <- create_usrtool("xyz", efunc)
toolset1
#> $xyz
#>
#> === Tool interface ===
#>
#> Tool name: xyz
#> Calculate AUC score: Yes
#> Store results: Yes
#> Prediction performed: No
#> Available methods: call(testset, calc_auc, store_res)
#> get_toolname()
#> set_toolname(toolname)
#> get_setname()
#> set_setname(setname)
#> get_result()
#> get_x()
#> get_y()
#> get_auc()
#>
#>
## Example function with a correct argument
testset <- create_usrdata("bench", scores = c(0.1, 0.2), labels = c(1, 0))
retf <- efunc(testset[[1]])
retf
#> $x
#> [1] 0.0 0.5 1.0
#>
#> $y
#> [1] 0.0 0.5 1.0
#>
#> $auc
#> [1] 0.5
#>