R/etc_utils_dataframe.R
, R/g_dataframe.R
as.data.frame.Rd
The as.data.frame
function converts an S3
object generated by
evalmod
to a data frame.
# S3 method for sscurves
as.data.frame(x, row.names = NULL, optional = FALSE, raw_curves = NULL, ...)
# S3 method for mscurves
as.data.frame(x, row.names = NULL, optional = FALSE, raw_curves = NULL, ...)
# S3 method for smcurves
as.data.frame(x, row.names = NULL, optional = FALSE, raw_curves = NULL, ...)
# S3 method for mmcurves
as.data.frame(x, row.names = NULL, optional = FALSE, raw_curves = NULL, ...)
# S3 method for sspoints
as.data.frame(x, row.names = NULL, optional = FALSE, raw_curves = NULL, ...)
# S3 method for mspoints
as.data.frame(x, row.names = NULL, optional = FALSE, raw_curves = NULL, ...)
# S3 method for smpoints
as.data.frame(x, row.names = NULL, optional = FALSE, raw_curves = NULL, ...)
# S3 method for mmpoints
as.data.frame(x, row.names = NULL, optional = FALSE, raw_curves = NULL, ...)
# S3 method for aucroc
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
An S3
object generated by evalmod
.
The as.data.frame
function takes
one of the following S3
objects.
ROC and Precision-Recall curves (mode = "rocprc")
S3 object | # of models | # of test datasets |
sscurves | single | single |
mscurves | multiple | single |
smcurves | single | multiple |
mmcurves | multiple | multiple |
Basic evaluation measures (mode = "basic")
S3 object | # of models | # of test datasets |
sspoints | single | single |
mspoints | multiple | single |
smpoints | single | multiple |
mmpoints | multiple | multiple |
Fast AUC (ROC) calculation with the U statistic (mode = "aucroc")
S3 object | # of models | # of test datasets |
aucroc | - | - |
See the Value section of evalmod
for more details.
Not used by this method.
Not used by this method.
A Boolean value to specify whether raw curves are
shown instead of the average curve. It is effective only
when raw_curves
is set to TRUE
of the evalmod
function.
Not used by this method.
The as.data.frame
function returns a data frame.
evalmod
for generating S3
objects with
performance evaluation measures.
if (FALSE) {
##################################################
### Single model & single test dataset
###
## Load a dataset with 10 positives and 10 negatives
data(P10N10)
## Generate an sscurve object that contains ROC and Precision-Recall curves
sscurves <- evalmod(scores = P10N10$scores, labels = P10N10$labels)
## Convert sscurves to a data frame
sscurves.df <- as.data.frame(sscurves)
## Show data frame
head(sscurves.df)
## Generate an sspoints object that contains basic evaluation measures
sspoints <- evalmod(
mode = "basic", scores = P10N10$scores,
labels = P10N10$labels
)
## Convert sspoints to a data frame
sspoints.df <- as.data.frame(sspoints)
## Show data frame
head(sspoints.df)
##################################################
### Multiple models & single test dataset
###
## Create sample datasets with 100 positives and 100 negatives
samps <- create_sim_samples(1, 100, 100, "all")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]]
)
## Generate an mscurve object that contains ROC and Precision-Recall curves
mscurves <- evalmod(mdat)
## Convert mscurves to a data frame
mscurves.df <- as.data.frame(mscurves)
## Show data frame
head(mscurves.df)
## Generate an mspoints object that contains basic evaluation measures
mspoints <- evalmod(mdat, mode = "basic")
## Convert mspoints to a data frame
mspoints.df <- as.data.frame(mspoints)
## Show data frame
head(mspoints.df)
##################################################
### Single model & multiple test datasets
###
## Create sample datasets with 100 positives and 100 negatives
samps <- create_sim_samples(10, 100, 100, "good_er")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]],
dsids = samps[["dsids"]]
)
## Generate an smcurve object that contains ROC and Precision-Recall curves
smcurves <- evalmod(mdat, raw_curves = TRUE)
## Convert smcurves to a data frame
smcurves.df <- as.data.frame(smcurves)
## Show data frame
head(smcurves.df)
## Generate an smpoints object that contains basic evaluation measures
smpoints <- evalmod(mdat, mode = "basic")
## Convert smpoints to a data frame
smpoints.df <- as.data.frame(smpoints)
## Show data frame
head(smpoints.df)
##################################################
### Multiple models & multiple test datasets
###
## Create sample datasets with 100 positives and 100 negatives
samps <- create_sim_samples(10, 100, 100, "all")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]],
dsids = samps[["dsids"]]
)
## Generate an mscurve object that contains ROC and Precision-Recall curves
mmcurves <- evalmod(mdat, raw_curves = TRUE)
## Convert mmcurves to a data frame
mmcurves.df <- as.data.frame(mmcurves)
## Show data frame
head(mmcurves.df)
## Generate an mmpoints object that contains basic evaluation measures
mmpoints <- evalmod(mdat, mode = "basic")
## Convert mmpoints to a data frame
mmpoints.df <- as.data.frame(mmpoints)
## Show data frame
head(mmpoints.df)
##################################################
### N-fold cross validation datasets
###
## Load test data
data(M2N50F5)
## Speficy nessesary columns to create mdat
cvdat <- mmdata(
nfold_df = M2N50F5, score_cols = c(1, 2),
lab_col = 3, fold_col = 4,
modnames = c("m1", "m2"), dsids = 1:5
)
## Generate an mmcurve object that contains ROC and Precision-Recall curves
cvcurves <- evalmod(cvdat)
## Convert mmcurves to a data frame
cvcurves.df <- as.data.frame(cvcurves)
## Show data frame
head(cvcurves.df)
## Generate an mmpoints object that contains basic evaluation measures
cvpoints <- evalmod(cvdat, mode = "basic")
## Convert mmpoints to a data frame
cvpoints.df <- as.data.frame(cvpoints)
## Show data frame
head(cvpoints.df)
##################################################
### AUC with the U statistic
###
## mode = "aucroc"
data(P10N10)
uauc1 <- evalmod(
scores = P10N10$scores, labels = P10N10$labels,
mode = "aucroc"
)
# as.data.frame 'aucroc'
as.data.frame(uauc1)
## mode = "aucroc"
samps <- create_sim_samples(10, 100, 100, "all")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]],
dsids = samps[["dsids"]]
)
uauc2 <- evalmod(mdat, mode = "aucroc")
# as.data.frame 'aucroc'
head(as.data.frame(uauc2))
}