The auc_ci
function takes an S3
object generated by
evalmod
and calculates CIs of AUCs when multiple data sets
are specified.
auc_ci(curves, alpha = NULL, dtype = NULL)
# S3 method for aucs
auc_ci(curves, alpha = 0.05, dtype = "normal")
An S3
object generated by evalmod
.
The auc_ci
function accepts the following S3 objects.
S3 object | # of models | # of test datasets |
smcurves | single | multiple |
mmcurves | multiple | multiple |
See the Value section of evalmod
for more details.
A numeric value of the significant level (default: 0.05)
A string to specify the distribution used for CI calculation.
dtype | distribution |
normal (default) | Normal distribution |
z | Normal distribution |
t | t-distribution |
The auc_ci
function returns a dataframe of AUC CIs.
##################################################
### Single model & multiple test datasets
###
## Create sample datasets with 100 positives and 100 negatives
samps <- create_sim_samples(4, 100, 100, "good_er")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]],
dsids = samps[["dsids"]]
)
## Generate an smcurve object that contains ROC and Precision-Recall curves
smcurves <- evalmod(mdat)
## Calculate CI of AUCs
sm_auc_cis <- auc_ci(smcurves)
## Shows the result
sm_auc_cis
#> modnames curvetypes mean error lower_bound upper_bound n
#> 1 good_er ROC 0.803000 0.03527781 0.7677222 0.8382778 4
#> 2 good_er PRC 0.839866 0.02171738 0.8181486 0.8615834 4
##################################################
### Multiple models & multiple test datasets
###
## Create sample datasets with 100 positives and 100 negatives
samps <- create_sim_samples(4, 100, 100, "all")
mdat <- mmdata(samps[["scores"]], samps[["labels"]],
modnames = samps[["modnames"]],
dsids = samps[["dsids"]]
)
## Generate an mscurve object that contains ROC and Precision-Recall curves
mmcurves <- evalmod(mdat)
## Calculate CI of AUCs
mm_auc_ci <- auc_ci(mmcurves)
## Shows the result
mm_auc_ci
#> modnames curvetypes mean error lower_bound upper_bound n
#> 1 random ROC 0.4964000 0.0181331097 0.4782669 0.5145331 4
#> 2 random PRC 0.4995228 0.0256121857 0.4739106 0.5251350 4
#> 3 poor_er ROC 0.8077000 0.0206049613 0.7870950 0.8283050 4
#> 4 poor_er PRC 0.7550536 0.0220631502 0.7329905 0.7771168 4
#> 5 good_er ROC 0.8117500 0.0093396963 0.8024103 0.8210897 4
#> 6 good_er PRC 0.8443380 0.0106722320 0.8336658 0.8550103 4
#> 7 excel ROC 0.9823250 0.0045456624 0.9777793 0.9868707 4
#> 8 excel PRC 0.9822201 0.0008885572 0.9813316 0.9831087 4
#> 9 perf ROC 1.0000000 0.0000000000 1.0000000 1.0000000 4
#> 10 perf PRC 1.0000000 0.0000000000 1.0000000 1.0000000 4